- Product Details
- {{item.text}}
Quick Details
-
Model Number:
-
MF904A
-
Product name:
-
MF904A Multifunction Digital Bakery Oven Temperature Controller
-
Application:
-
Temperature Control System
-
Power supply:
-
110/220/380VAC
-
Material:
-
ABS Plastic
-
Color:
-
Customer's Requirements
-
Function:
-
Temperature control system
-
Display:
-
LED
-
Working conditions:
-
-10 ° C ~ +60 ° C, relative humidity: 20% ~ 85%
-
Control Mode:
-
PID/ONOF
Quick Details
-
Warranty:
-
2Years
-
Place of Origin:
-
Sichuan, China
-
Brand Name:
-
VACORDA
-
Model Number:
-
MF904A
-
Product name:
-
MF904A Multifunction Digital Bakery Oven Temperature Controller
-
Application:
-
Temperature Control System
-
Power supply:
-
110/220/380VAC
-
Material:
-
ABS Plastic
-
Color:
-
Customer's Requirements
-
Function:
-
Temperature control system
-
Display:
-
LED
-
Working conditions:
-
-10 ° C ~ +60 ° C, relative humidity: 20% ~ 85%
-
Control Mode:
-
PID/ONOF
MF904A Multifunction Digital Bakery Oven Temperature Controller With Thermocouple
How do Temperature Controllers work?
To accurately control process temperature without extensive operator involvement, a temperature control system relies upon a controller, which accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual temperature to the desired control temperature, or setpoint, and provides an output to a control element. The controller is one part of the entire control system, and the whole system should be analyzed in selecting the proper controller. The following items should be considered when selecting a controller:
1. Type of input sensor (thermocouple, RTD) and temperature range
2. Type of output required (electromechanical relay, SSR, analog output)
3. Control algorithm needed (on/off, proportional, PID)
4. Number and type of outputs (heat, cool, alarm, limit)
On/Off Control
An on-off controller is the simplest form of temperature control device. The output from the device is either on or off, with no middle state. An on-off controller will switch the output only when the temperature crosses the setpoint. For heating control, the output is on when the temperature is below the setpoint, and off above setpoint. Since the temperature crosses the setpoint to change the output state, the process temperature will be cycling continually, going from below setpoint to above, and back below. In cases where this cycling occurs rapidly, and to prevent damage to contactors and valves, an on-off differential, or “hysteresis,” is added to the controller operations. This differential requires that the temperature exceed setpoint by a certain amount before the output will turn off or on again. On-off differential prevents the output from “chattering” or making fast, continual switches if the cycling above and below the setpoint occurs very rapidly. On-off control is usually used where a precise control is not necessary, in systems which cannot handle having the energy turned on and off frequently, where the mass of the system is so great that temperatures change extremely slowly, or for a temperature alarm. One special type of on-off control used for alarm is a limit controller. This controller uses a latching relay, which must be manually reset, and is used to shut down a process when a certain temperature is reached.
Proportional Control
Proportional controls are designed to eliminate the cycling associated with on-off control. A proportional controller decreases the average power supplied to the heater as the temperature approaches setpoint. This has the effect of slowing down the heater so that it will not overshoot the setpoint, but will approach the setpoint and maintain a stable temperature. This proportioning action can be accomplished by turning the output on and off for short time intervals. This "time proportioning" varies the ratio of “on” time to "off" time to control the temperature. The proportioning action occurs within a “proportional band” around the setpoint temperature. Outside this band, the controller functions as an on-off unit, with the output either fully on (below the band) or fully off (above the band). However, within the band, the output is turned on and off in the ratio of the measurement difference from the setpoint. At the setpoint (the midpoint of the proportional band), the output on:off ratio is 1:1; that is, the on-time and off-time are equal. if the temperature is further from the setpoint, the on- and off-times vary in proportion to the temperature difference. If the temperature is below setpoint, the output will be on longer; if the temperature is too high, the output will be off longer.